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The Schwinger variational principle for the scattering amplitude produces accurate results when the trial
function is selected to contain the essential physics of the problem. Very simple trial functions that are capable
of satisfying the boundary condition and of approximating the lit and unlit aspects of shadowing give excellent
results for Dirichlet scatterers but not for Neumann scatterers. Physics suggests that creeping waves are the
missing ingredient in the latter case. The current study verifies the validity of this suggestion for the test
problem of plane-wave scattering from an infinite cylinder. The validation is based on a hybrid solution that
consists of the variational backscattering amplitude supplemented by the creeping-wave contribution that is
available from the exact solution. Good accuracy is obtained for the entire frequency range, thereby suggesting
that incorporating the creeping-wave effects into the shadowed-boundary-Born trial functions is as much
improvement as is needed and desirable in order to obtain good fully variational results for smooth scatterers
with Neumann’s boundary condition.@S1063-651X~96!00412-6#

PACS number~s!: 42.25.Fx, 02.30.Wd, 03.50.De, 03.80.1r

I. INTRODUCTION

The well-known powerful feature of the Schwinger varia-
tional principle @1–6,7, pp. 1135 and 1545#, which makes
this or any other variational principle attractive in approxi-
mate calculations, is that the error in the approximation for
the physical quantity of interest is of second order when the
error in the trial function is of first order. Moreover, the
variational principle is guaranteed to yield exact results if the
trial function is exact. Conversely, when the error in the trial
function is sufficiently large the error in the result becomes
correspondingly augmented, and the variational principle
fails dramatically.

In general, no bounds are available for determining the
accuracy of the approximation@8, pp. 465, 577, and 653# in
variationally formulated scattering problems because the
Schwinger variational principle is neither a minimum nor a
maximum, but merely a stationary principle with an un-
known ‘‘saddle’’ orientation@9,10#. Consequently, greater
complexity of trial functions does not guarantee greater final
accuracy of variational results@6,9,10#, and a judicious
choice of trial functions is of great importance for scattering
problems. The use of simple test problems to guide the de-
velopment of generic trial functions and to verify their over-
all efficacy has proven beneficial.

Therefore, in our quest for finding trial functions that are
simple and plausible rather than formal and rigorous@11,12#,
@13, Sec. I.2.14.2#, @14, Sec. 2.2.2.6#, we have relied@15–19#
on generic insights into the physical aspects of wave-
scattering problems, and tested these insights with simple
canonical problems for which exact solutions are available
@13,14#. In view of the lack of specific criteria for the suc-
cessful choice of trial functions@12#, it has been suggested
@20# that one should make every effort to select trial func-
tions that satisfy as many of the known features of the solu-
tion as possible. However, our previous work on wave scat-

tering suggests that, with Dirichlet’s boundary condition
~TM polarization!, it is sufficient for the trial functions to be
capable of onlycrudely imitating theessentialphysical re-
quirements of the problem at hand, at least for the problems
examined@15–19#. More specifically, with the shadowed-
boundary-Born trial functions that are capable of imitating
~even rather crudely! both the correct boundary condition on
the scatterer surface and the expected shadowing effects of
the obstacle, very good all-frequency accuracy can be ob-
tained for plane-wave scattering from acoustically soft
spheres@16# and spheroids@17#, as well as from perfectly
conducting cylinders and hemicylindrically embossed planes
@18,19#.

Before investing the considerable effort needed to de-
velop numerical and analytical techniques for optimal evalu-
ation of the variational principle in practical problems, it is
desirable to examine whether additional physics needs to be
included in the design of trial functions for other boundary
conditions. This paper concentrates on a simple test problem
of plane-wave backscattering from an infinite cylinder with
Neumann’s boundary condition~TE polarization!. Specifi-
cally, it is demonstrated, via a hybrid solution, that when a
creeping-wave contribution~which is available from the ex-
act solution to the test problem! is added to the variationally
derived backscattering amplitude, good accuracy results for
the entire frequency range. Thereby this paper demonstrates
that, unlike the TM case where the creeping-wave effects are
numerically insignificant, they represent an essential physical
ingredient of the TE scattering that needs to be incorporated
into the shadowed-boundary-Born trial functions.

II. THE OPTICS AND CREEPING-WAVE COMPONENTS
OF THE EXACT BACKSCATTERING AMPLITUDE

Scattering of a plane wave from an infinitely long per-
fectly conducting cylinder of radiusa is depicted in Fig. 1,
where kW i , kW s are, respectively, the incident and scattered

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6838~7!/$10.00 6838 © 1996 The American Physical Society



propagation vectors~with ks5ki[k52p/l, andl the inci-
dent wavelength!. As denoted in Fig. 1, the scattering angle
fs is measured from the incident direction~x axis!, and the
cylinder axis is along thez direction. The usual polar coor-
dinatesr, f are used to specify an arbitrary point~rW ! in a
plane normal to the cylinder axis. Only normal plane-wave
incidence is considered because, for the case of a perfect
conductor, a general three-dimensional~3D! problem of ob-
lique incidence can be reduced to two scalar~i.e., TM and
TE! 2D scattering problems@13, p. 90#. Also, without loss of
generality, the incident plane wave is assumed to be of unit
~dimensionless! amplitude, and the harmonic time depen-
dencee2 ivt is suppressed everywhere.

For TE polarization, the total~incident plus scattered! sca-
lar wave functionc represents the~total! magnetic field that
is parallel to the cylinder axis and has its normal derivative
vanishing on the cylinder surface, i.e., satisfies Neumann’s
boundary condition. The far-zone scattered field is repre-
sented in terms of the dimensionless scattering amplitude
T(fs) as @14, Sec. 4.1.1.2#

cs~r,fs!5A2/p
ei ~kr2p/4!

Akr
T~fs!, ~1!

where@14, Sec. 4.1.2.1#

T~fs!52 (
m50

`

«m
Jm8 ~ka!

Hm
~1!8~ka!

cosmfs ~2a!

with

«m5 H1,2, m50
m51,2,... . ~2b!

HereJm andH m
(1) are, respectively, Bessel and Hankel func-

tions of the first kind of orderm @21, p. 358#, and the primes
indicate derivatives with respect to the argument. The differ-
ential cross section~cf. @14, Sec. 4.1.1.2#!

s5 H uTu2/~ka!2

uTu2~4/pka!

forward ~fs50!,
otherwise ~fsÞ0!

~3a!

~3b!

is normalized so thats→1 for forward scattering and back
scattering whenka→`.

Utilizing an elaborate asymptotic~large size parameter
ka! analysis@22,23,14, Sec. 2.3.2#, the exact backscattering

~fs5p! amplitude can be decomposed into its opticalTop

and creeping-waveTcr components@24, Sec. 17.41#

T5Top1Tcr. ~4a!

A development useful numerically forka.2 is explicitly
given by @13, Sec. 2.2.2.3, 14, Sec. 4.1.2.4.2#:

Top5 1
2Apka exp@ i ~p/422ka!#

3H 12
i11

16ka
2

353

512~ka!2
1O@~ka!23#J ~4b!

and

Tcr51.531 915Ap~ka!1/3exp@22.20~ka!1/3

20.395 763 5~ka!21/3#exp$ i @p/31pka

11.270 169 5~ka!1/320.228 494 5~ka!21/3#%. ~4c!

The first term in the optical component is the standard
geometric optics contribution, which is shown in Fig. 2 as a
specularly reflected ray. The physical interpretation of the
origin of the far-field creeping-wave contribution~4c! is as
follows @14, Sec. 2.3.2, 22,23,24, Secs. 17.32 and 17.41#.
The incident rays at the two points of tangency to the cylin-
der ~see Fig. 2 where only one such ray is shown! launch
creeping waves that travel along the cylinder surface with the
phase velocity slightly smaller than in free space. As they
travel along the surface, they shed radiation along tangential
directions and thus become exponentially damped.

One can readily appreciate the accuracy of the optics and
creeping-waves representation~4! of the exact backscatter
through inspection of Fig. 3. In this figure, backscattering
cross sections for the optics contribution, the creeping-wave
contribution, and the combined optics plus creeping-wave
contribution, as generated by substituting Eqs.~4! into Eq.
~3b!, are plotted along with the exact solution. The represen-
tation ~4! fails badly for ka&1, but is quite accurate for
ka*2, becoming progressively more accurate with increas-
ing ka.

The main features of the backscatter oscillatory structure
can be readily deduced@22,25, Sec. 4.3.1, 26, Sec. 6.2.1#
from a simple physical representation of interference be-
tween the specularly reflected wave and a creeping wave that
encircles the cylinder to the other point of tangency and is
shed backwards~Fig. 2!. To the extent that the creeping
wave travels along the cylinder surface at~approximately!

FIG. 1. Schematic representation of plane-wave scattering by an
infinite cylinder. The incident electric field is along they axis ~TE
polarization!.

FIG. 2. Schematic illustration of the specularly reflected ray and
a creeping wave, whose interference produces oscillations in the
exact backscatter.
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the free-space velocity, it traverses an additional~relative to
the specularly reflected ray! path length equal to the cylinder
diameter plus half the circumference, or a total additional
path of ~21p!a. The interference pattern, therefore, should
have peak-to-peak spacings inka that occur when the path
length difference is a wavelength, or forDka52p/~21p!
'1.22, which is in close agreement with the actual average
spacing in Fig. 3. Furthermore, because the creeping wave
loses energy in proportion to the distance traveled along the
cylinder, it becomes weaker~damped! as the cylinder radius
becomes larger. Consequently, the interference pattern be-
comes weaker~damped! as the electrical size of the cylinder,
i.e., its size parameterka, increases. Therefore, the creeping-
wave contribution becomes numerically insignificant for
ka*20. Also, the higher-order creeping waves that made one
or more additional complete circumnavigations in clockwise
and counterclockwise directions around the cylinder are of
little significance, and were not included in Eq.~4c!.

We note in passing that in the corresponding expression
for creeping waves with TM polarization@13, Sec. 2.2.1.3,
14, Sec. 4.1.2.4.2# the numerical coefficient~22.20! in the
exponent of the dominant damping factor in Eq.~4c! would
be replaced by~'25.05!, and the overall constant factor
~'1.53! by ~'0.91!, among other minor changes. Conse-
quently, the creeping-wave contribution is numerically insig-
nificant for TM polarization, and produces only a slight,
barely perceptible wavering in the backscatter as a function
of ka.

III. SCHWINGER VARIATIONAL PRINCIPLE
FOR SCATTERING AMPLITUDE

The Schwinger variational principle for wave scattering
from a cylinder with Neumann’s boundary condition~TE
polarization! can be readily derived following the standard
procedure@2–6, 7, pp. 1135 and 1545#. The resulting varia-
tional expression for the~complex! scattering amplitude

TV5NÑ/D ~5a!

can be written down in terms of line integrals along the cyl-
inder circumference

N5
ia

4 E
0

2p

df c~r,f!
]

]r
e2 ikr cos~f2fs!U

r5a

, ~5b!

Ñ5
ia

4 E
0

2p

df8c̃~r8,f8!
]

]r8
eikr8cosf8U

r85a

, ~5c!

D5
a2

16 E0
2p

dfE
0

2p

df8c~r,f!c̃~r8,f8!

3
]2H0

~1!~kurW 2rW 8u!
]r]r8

U
r85a
r5a

. ~5d!

Here, as in Sec. II the scalar wave functionc represents the
total ~incident plus scattered! magnetic field that is parallel to
the cylinder axisz. Also, c̃ represents the adjoint field, i.e.,
the solution of the reciprocal problem in which the source
and observer are interchanged@7, p. 1131#. It should be
noted that the variational solution will satisfy reciprocity
@11# if the adjoint trial field is chosen via the substitution
f2f i→f2fs2p, i.e.,

c̃ trial~r8,f8!5c trial~r,f!uf5f82fs2p , ~6!

where the incident angle is eliminated~fi50! by measuring
all angles relative to it~see Fig. 1!. This choice for the ad-
joint trial field is used throughout this paper. The Hankel
function of the first kind and zeroth order,H 0

~1! , in Eq. ~5d!
represents~up to a constant factor! a 2D free-space Green’s
function appropriate for this problem@13, Sec. I.2.7#. The
variational cross sectionsV is found from Eq.~3! with TV

substituted forT.
If the correct fieldc ~and, hence,c̃! on the scatterer sur-

face is used in Eq.~5!, each of the integralsN, Ñ, andD, as
well as their ratio Eq.~5a!, will yield the correct scattering
amplitude. However, in general, such correct surface fields
are not known, which necessitates the use of approximations
for c ~and its adjoint! on the scatterer surface to obtain an
approximate variational scattering amplitudeTV.

IV. VARIATIONAL SOLUTION
WITH THE SHADOWED-BOUNDARY-

BORN TRIAL FUNCTION

The approach we used to develop the boundary-Born trial
functions with shadowing has been described in detail in
@19#, so here we just recapitulate its salient features. Briefly,
it is based on gaining physical insight into scattering prob-
lems, in particular for limiting cases such as very small and
very large size parameterska, and then to incorporate the
essential physics into the trial function. In this approach,
starting with the classic Born approximation~i.e., just the
incident-wave field! as a ‘‘seed,’’ a single universal trial
function capable of correctly reproducing both the small and
largeka limits, as well as to~crudely! imitate the essential

FIG. 3. The optics~dot-dashed curve!, creeping-wave~dashed
curve!, and optics-plus-creeping-wave~dotted curve! approxima-
tions are compared with the exact backscatter~solid curve!. The
optics-plus-creeping-wave approximation of the exact solution is
quite accurate forka*2 but fails at smallka’s. The logarithmicka
scale is used to emphasize the small and moderateka behavior.
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physical requirements of the problem, is designed for the
entire frequency range.

In this section we only state the results for TE scattering,
with the main focus being on the backscatter, which is of
prime interest in monostatic radar measurements@14, p. 9#.
The following shadowed-boundary-Born trial function

c~r,f!5@12b~ka!cosf#@eikr cosf2 f ~kr!cosfeika cosf#
~7!

is used only in the immediate neighborhood of the cylinder
and is capable of satisfying Neumann’s boundary condition,
i.e.,

c8~ka![]c~kr!/]rur5a50, ~8!

provided f 8(ka)5 ik. Thus, augmenting the incident plane
wave ~i.e., the classic Born approximation! with the f (kr)
term enables the trial function to satisfy the correct boundary
condition that is known to play a key role at low and mod-
erate frequencies@27#. The quantity that actually enters the
invariant expression~5! for the scattering amplitude isf (ka).
The factor @12b(ka) cosf# is a ~crude! approximation to
geometric shadowing in that, for positiveb near unity, this
factor is small forf near zero and is~11b! for f nearp.
The adjoint trial field follows from Eq.~6!, which implies
that b̃5b and f̃ (ka)5 f (ka).

Inserting the trial function~7! and its adjoint into Eq.~5!,
and using Graf’s addition theorem@21, p. 363# at the cylin-
der surface in order to reduce the double integral in Eq.~5d!
to a sum of products of two single integrals, we obtain

N52ka~ ip/2!H sin fs

2
J1~a!2 i

b

2
@cosfsJ0~a!

1J2~a!#2
i

2
f ~ka!XcosfsJ0~a!1J2~a!

1 ibF S sin fs

2
2
1

2
sin

3fs

2 D J1~a!

2
1

2
sin

fs

2
J3~a!GCJ ~9a!

and

D5k2a2~p2/4! (
m50

`

«mcos~mfs!Jm8Hm
~1!8

3@Jm1 ibJm8 1 i f ~ka!~Jm8 1 ibJm9 !#2, ~9b!

where

a[2ka sin~fs/2!, ~9c!

and the arguments of Bessel and Hankel functions in Eq.
~9b! are understood to beka, with the primes indicating
derivatives with respect to the argument. We also note that
due to the choice Eq.~6!, Ñ5N. It is convenient to write
Eqs.~9a! and ~9b! as

N[n0@n11n2f ~ka!# ~10a!

and

D[d0@d112d2f ~ka!1d3f
2~ka!#, ~10b!

wheren0 andd0 are the overall~angular-independent! factors
in Eqs.~9a! and~9b!, with explicit expressions for the other
symbolic quantities being obvious from the termwise corre-
spondence between Eqs.~10a! and ~10b! and ~9a! and ~9b!.

The as-yet arbitrary functionf (ka) is treated as a varia-
tional parameter being determined through the stationary
condition

]TV/] f ~ka!50. ~11!

Then it follows from Eq.~10! that the stationaryf (ka) can
be expressed as

f ~ka!52
n1d22n2d1
n1d32n2d2

, ~12!

and the stationary scattering amplitude is

TV5
N2

D
52

n1
2d322n1n2d21n2

2d1
d1d32d2

2 , ~13!

where the symbolsf (ka) andTV are now used to denote the
stationary values@28#. All of the quantities in Eqs.~12! and
~13! are known, and reduce to simpler expressions for back-
scattering,fs5p.

The first ~shadowing! factor in Eq. ~7!, with b(ka) as-
sumed independent off, was introduced in order to imitate
the shadowing effects that become important at high fre-
quencies@7, pp. 1381 and 1551#. On the other hand, accord-
ing to the physics of wave scattering, shadowing is not
present for small size parameters because diffraction causes
the entire scatterer to be illuminated. Therefore, we specify
b(ka) by introducing a simple ramp function as follows:

b~ka!5H 0, ka<0.4
~ka20.4!/~1.020.4!, 0.4,ka,1.0
1, ka>1.0.

~14!

Hence, forka>1, b51 and the shadowing factor in Eq.~7!
equals two at the central point on the illuminated side~f5p!
of the cylinder, then gradually diminishes to zero at the op-
posite point~f50! on the shadowed side, thus imitating cor-
rectly the expected shadowing effects at these points@29#.

For ka<0.4,b50 and the trial function~7! goes over to
the boundary-Born function without shadowing, which pro-
vides@by virtue of the stationaryf (ka) employed in Eq.~9!#
variational results that are very accurate. In fact, the non-
shadowed trial field,b50, yields very accurate results for
ka&0.7. For moderate and large size parameters the non-
shadowed trial function yields a backscatter that reasonably
approximates the first few oscillations, but is heavily con-
taminated by spurious wiggles and/or narrow-band spikes
beginning withka somewhat larger than one, as illustrated in
Fig. 4~c!. Even so, this result is a marked improvement on
the corresponding Born@whose scattering amplitude is rep-
resented byN with b[0 andf (ka)[0# and Born-variational
@with b[0 and f (ka)[0 in Eq. ~9!# approximations shown
in Figs. 4~a! and 4~b!, respectively.
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Furthermore, when the simple shadowing withb(ka) de-
fined in Eq.~14! is incorporated into the boundary-Born trial
function @with the stationaryf (ka) determined by Eq.~11!#
as in Eq.~7!, the spurious features are effectively eliminated
and the resulting backscatter is quite accurate for both small
~ka&0.6! and large~ka*20! size parameters, see Fig. 4~d!.
However, in between, i.e., in the resonance region
~0.4&ka&20! @14, p. 147#, where the exact solution attains a
peak nearka50.8 and then oscillates about the geometric
optics value ofs51 @see Eqs.~4b! and ~3b!# with damped,
regularly spaced excursions, the shadowed-boundary-Born
trial field yields an approximate backscatter cross section
that resembles an overall average of the exact result.

V. HYBRID „VARIATIONAL PLUS CREEPING WAVES …

SOLUTION

In order to gain further insight into the behavior of the
shadowed-boundary-Born backscatter, we compare both the
cross sections and the~scattering amplitude! phases of the
variational and optics approximations in Fig. 5. The varia-
tional result is very accurate forka&0.6 @Fig. 4~d!#, but the
optics approximation fails in this region~Fig. 3!. However,
an inspection of Fig. 5 reveals that the two approximations
are in general agreement forka*2, and they practically co-
incide for ka*10, both approaching the geometric optics
limit for large ka. Coupling these observations with the fact

that the optics-plus-creeping-wave approximation~Fig. 3! is
reasonably accurate forka*2, suggests that augmenting the
variational backscatter with the creeping-wave contribution
Eq. ~4c!, might lead to better accuracy.

It is gratifying to see this expectation amply fulfilled, as
Fig. 6 attests, where the hybrid solution obtained by substi-
tuting @cf. Eq. ~4a!#

Thyb5TV1Tcr ~15!

into Eq. ~3b! is compared with the exact backscatter cross
section and phase. Not only a remarkable improvement is
achieved forka*2, i.e., for the domain where the represen-
tation ~4! holds true, but also the agreement is quite good for
0.6&ka&2.0, where the creeping-wave theory is not sup-
posed to be efficient~see Fig. 3!. This somewhat unexpected
improvement is, in part, a result of our use of the same ramp
function as in Eq.~14! to premultiply Tcr ~which is quite
reasonable!, but is mostly due to the fact that the shadowed-
boundary-Born backscatterTV is more accurate than the op-
tics contributionTop for 0.7&ka&2 @cf. Figs. 3 and 4~d!#.
And sinceTV itself is very accurate forka&0.6 andka*20,
good all-frequency accuracy is achieved with this hybrid so-
lution for TE backscattering.

On the other hand, for TM backscattering, we have found
that the hybrid solution does not lead to further improve-
ments of the already very accurate variational results@19#.

FIG. 4. The Born and Born-variational approximations~dotted curves! are compared with the exact backscatter~solid curve! in,
respectively,~a! and ~b!. The variational results~dotted curves! calculated by using the boundary-Born trial function without and with
shadowing are shown against the exact solution~solid curve! in, respectively,~c! and ~d!. Note that the variational result in~d! is very
accurate forka&0.6 andka*20, but lacks the interference pattern of the exact solution in the resonance region.

6842 54B. J. STOYANOV AND R. A. FARRELL



This is because the nominal changes effected by the corre-
sponding creeping-wave contribution@14, Sec. 4.1.2.4.2# are
comparable to the existing small inaccuracies in the varia-
tional results. Therefore, unlike the TE case, for TM scatter-
ing further improvement in the shadowed-boundary-Born
trial functions by ~approximately! including the creeping-
wave effects is unwarranted from a practical computational
standpoint.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have demonstrated for a simple test
problem of plane-wave scattering from an infinite cylinder
with Neumann’s boundary condition that incorporating, via a
hybrid solution, the creeping-wave contribution~available
from the exact solution! into the variationally derived back-
scattering amplitude yields good accuracy for all size param-
eters. Intuitively appealing explanations have also been pro-
vided concerning the effectiveness of this hybrid~variational
plus creeping waves! solution in the entire resonance region
and beyond.

Although practical applicability of the hybrid approach is

limited to those few scattering problems for which accurate
and numerically efficient expressions for creeping-wave con-
tributions are available, the present result nevertheless dem-
onstrates that, for TE scattering, creeping waves constitute
an essential physical ingredient missing in the shadowed-
boundary-Born trial fields. Therefore, fully variational solu-
tions need to be developed, whose trial functions would be
capable of directly accommodating the creeping-wave effects
through simple, approximate means similar to those used to
imitate the correct boundary condition and the expected
shadowing effects. It has also been observed that for TM
scattering the shadowed-boundary-Born trial functions lead
to very accurate variational results because creeping-wave
effects are numerically insignificant in this case and need not
be included into the trial functions.

It is our opinion that the shadowed-boundary-Born trial
functions, with the creeping-wave effects properly~even if
crudely! incorporated, should be sufficient to yield good
broad-band accuracy for simple smooth scatterers with Neu-
mann’s boundary condition. However, additional work is
needed in order to develop simple and efficient trial func-

FIG. 5. Comparison of the~shadowed-boundary-Born! variational solution~dotted curve! and the optics approximation~solid curve!. The
cross sections are plotted in~a! and the~scattering amplitude! phases in~b!. Note that while the variational and optics approximations are in
general agreement with each other forka*2, the variational result is also very accurate forka*0.6 where the optics approximation fails, cf.
Figs. 3 and 4~d!.

FIG. 6. Comparison of the hybrid~dotted curve! and the exact~solid curve! solutions. The cross sections are plotted in~a! and the
~scattering amplitude! phases in~b!. Note that, when the creeping-wave contribution~from the exact solution! is added to the scattering
amplitude obtained from the~shadowed-boundary-Born! variational solution, the resulting hybrid solution yields good backscattering accu-
racy for all size parameters.
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tions for problems of real interest, namely, general 3D prob-
lems with geometries not permitting exact analytical solu-
tions. Moreover, the question of expediency of using the
variational approach vs grinding out a numerical ‘‘exact’’
scattering amplitude arises.
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