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Importance of creeping waves in Schwinger variational-principle calculations of backscattering
from cylinders with Neumann’s boundary condition
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The Schwinger variational principle for the scattering amplitude produces accurate results when the trial
function is selected to contain the essential physics of the problem. Very simple trial functions that are capable
of satisfying the boundary condition and of approximating the lit and unlit aspects of shadowing give excellent
results for Dirichlet scatterers but not for Neumann scatterers. Physics suggests that creeping waves are the
missing ingredient in the latter case. The current study verifies the validity of this suggestion for the test
problem of plane-wave scattering from an infinite cylinder. The validation is based on a hybrid solution that
consists of the variational backscattering amplitude supplemented by the creeping-wave contribution that is
available from the exact solution. Good accuracy is obtained for the entire frequency range, thereby suggesting
that incorporating the creeping-wave effects into the shadowed-boundary-Born trial functions is as much
improvement as is needed and desirable in order to obtain good fully variational results for smooth scatterers
with Neumann’s boundary conditiofS1063-651X96)00412-9

PACS numbsg(s): 42.25.Fx, 02.30.Wd, 03.50.De, 03.80.

[. INTRODUCTION tering suggests that, with Dirichlet's boundary condition
(TM polarization, it is sufficient for the trial functions to be
The well-known powerful feature of the Schwinger varia- capable of onlycrudely imitating the essentialphysical re-
tional principle[1-6,7, pp. 1135 and 1545which makes quirements of the problem at hand, at least for the problems
this or any other variational principle attractive in approxi- €xamined[15-19. More specifically, with the shadowed-
mate calculations, is that the error in the approximation foloundary-Born trial functions that are capable of imitating
the physical quantity of interest is of second order when thé€ven rather crudejyboth the correct boundary condition on
error in the trial function is of first order. Moreover, the the scatterer surface and the expected shadowing effects of
variational principle is guaranteed to yield exact results if thd1€ obstacle, very good all-frequency accuracy can be ob-

trial function is exact. Conversely, when the error in the trialtaiﬂed f‘ig plage—wr?ve _;Cf;tering frl?m aftcousticaflly |S°ft
function is sufficiently large the error in the result becomes>P ereq16] and spheroid$17], as well as from perfectly

correspondingly augmented, and the variational principl conducting cylinders and hemicylindrically embossed planes

: ! 918,19,
fails dramatically. . - Before investing the considerable effort needed to de-
In general, no bounds are available for determining the{/el

S op numerical and analytical techniques for optimal evalu-
accuracy of the approximatid®, pp. 465, 577, and 6331 4ion of the variational principle in practical problems, it is

variationally formulated scattering problems because thgesirable to examine whether additional physics needs to be
Schwinger variational principle is neither a minimum nor ajncjyded in the design of trial functions for other boundary
maximum, but merely a stationary principle with an un- conditions. This paper concentrates on a simple test problem
known “saddle” orientation[9,10]. Consequently, greater of plane-wave backscattering from an infinite cylinder with
complexity of trial functions does not guarantee greater finaNeumann’s boundary conditioffE polarization. Specifi-
accuracy of variational result§6,9,10, and a judicious cally, it is demonstrated, via a hybrid solution, that when a
choice of trial functions is of great importance for scatteringcreeping-wave contributiotwhich is available from the ex-
problems. The use of simple test problems to guide the deact solution to the test problerns added to the variationally
velopment of generic trial functions and to verify their over- derived backscattering amplitude, good accuracy results for
all efficacy has proven beneficial. the entire frequency range. Thereby this paper demonstrates
Therefore, in our quest for finding trial functions that are that, unlike the TM case where the creeping-wave effects are
simple and plausible rather than formal and rigorfils 12,  numerically insignificant, they represent an essential physical
[13, Sec. .2.14.R[14, Sec. 2.2.2 b we have relied15-19 ingredient of the TE scattering that needs to be incorporated
on generic insights into the physical aspects of waveinto the shadowed-boundary-Born trial functions.
scattering problems, and tested these insights with simple
canonical problems for which exact solutions are available|, t4e opTICS AND CREEPING-WAVE COMPONENTS

[13,14. In vjew of t.he lack 'of speci_fic criteria for the suc- OF THE EXACT BACKSCATTERING AMPLITUDE
cessful choice of trial functiongl2], it has been suggested

[20] that one should make every effort to select trial func- Scattering of a plane wave from an infinitely long per-
tions that satisfy as many of the known features of the solufectly conducting cylinder of radiua is depicted in Fig. 1,
tion as possible. However, our previous work on wave scatwhere K;, Ks are, respectively, the incident and scattered
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FIG. 1. Schematic representation of plane-wave scattering by an
infinite cylinder. The incident electric field is along tlyeaxis (TE
polarization).

FIG. 2. Schematic illustration of the specularly reflected ray and
a creeping wave, whose interference produces oscillations in the
exact backscatter.

propagation vectorgwith ks=k;=k=2#/\, and\ the inci-
dent wavelength As denoted in Fig. 1, the scattering angle
¢, is measured from the incident directigx axis), and the
cylinder axis is along the direction. The usual polar coor- T=TOP+ TO" (43
dinatesp, ¢ are used to specify an arbitrary poi@) in a

plane normal to the cylinder axis. Only normal plane-waveA development useful numerically fdka>2 is explicitly
incidence is considered because, for the case of a perfegiven by[13, Sec. 2.2.2.3, 14, Sec. 4.1.24.2
conductor, a general three-dimensiof@D) problem of ob-

(¢s=m) amplitude can be decomposed into its opticaf
and creeping-wavé® component§24, Sec. 17.4]L

lique incidence can be reduced to two scala., TM and TP=3Vmka exdi(w/4—2ka)]
TE) 2D scattering problemid 3, p. 94. Also, without loss of :
: L2 . . i11 353
generality, the incident plane wave is assumed to be of unit x{1 +0[(ka) %] (4b)

(dimensionless amplitude, and the harmonic time depen- leka 512ka)
dencee '“! is suppressed everywhere.

For TE polarization, the totdlncident plus scatterg¢dca-
lar wave functiony represents thé&otal) magnetic field that To'=1.531 915/7(ka) Vigxd —2.20ka) Y3
is parallel to the cylinder axis and has its normal derivative
vanishing on the cylinder surface, i.e., satisfies Neumann’s —0.395 763 Bka)  Y3lexp(i[ 7/3+ wka
boundary condition. The far-zone scattered field is repre- 13 Y
sented in terms of the dimensionless scattering amplitude +1.270 169 bka) - 0.228 494 Bka) ]} (4¢)
T(os) as[14, Sec. 4.1.1p

and

The first term in the optical component is the standard

i(kp— /) geometric optics contribution, which is shown in Fig. 2 as a
b)) =\2lm ——— T(b,), (1)  specularly reflected ray. The physical interpretation of the
vl ds \/E (s origin of the far-field creeping-wave contributigdc) is as
follows [14, Sec. 2.3.2, 22,23,24, Secs. 17.32 and 17.41
where[14, Sec. 4.1.2]11 The incident rays at the two points of tangency to the cylin-

der (see Fig. 2 where only one such ray is shovaunch
(2a) creeping waves that travel along the cylinder surface with the
phase velocity slightly smaller than in free space. As they
travel along the surface, they shed radiation along tangential
with directions and thus become exponentially damped.
One can readily appreciate the accuracy of the optics and
s :[1* m=0 (2b) creeping-waves representatiof) of the exact backscatter
mol2, m=12,.... through inspection of Fig. 3. In this figure, backscattering

[’

Im(ka)
T(p)=— >,

—1, < coan
o Em R (k) S0P

cross sections for the optics contribution, the creeping-wave
contribution, and the combined optics plus creeping-wave
contribution, as generated by substituting E@8.into Eq.

HereJ,, andH (M) are, respectively, Bessel and Hankel func-
tions of the first kind of ordem [21, p. 35§, and the primes

indi_cate derivativ_es with respect to the argument. The differ-(sb), are plotted along with the exact solution. The represen-
ential cross sectiofcf. [14, Sec. 4.1.112 tation (4) fails badly for ka1, but is quite accurate for
[|T|2/(ka)2 forward (s=0), (33 :%zkze{ becoming progressively more accurate with increas-
o= . .
ITI*(4/mka)  otherwise ($s#0) (3b) The main features of the backscatter oscillatory structure
can be readily deducel®2,25, Sec. 4.3.1, 26, Sec. 6.p.1
from a simple physical representation of interference be-
is normalized so thatr—1 for forward scattering and back tween the specularly reflected wave and a creeping wave that
scattering wherka—o, encircles the cylinder to the other point of tangency and is
Utilizing an elaborate asymptotiflarge size parameter shed backwardgFig. 2). To the extent that the creeping
ka) analysis[22,23,14, Sec. 2.3]2the exact backscattering wave travels along the cylinder surface (approximately
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FIG. 3. The opticqdot-dashed curye creeping-wavegdashed (5d)

curve), and optics-plus-creeping-waueotted curve¢ approxima- dpdp’ ‘973'
tions are compared with the exact backscatsaiid curvg. The pa

op.tics-plus-creeping-wave approximation of the exat;t sqlution iSHere, as in Sec. Il the scalar wave functigriepresents the
quite accurate foka=2 but fails at smalka's. The logarithmicka ) (incident plus scatterganagnetic field that is parallel to
scale is used to emphasize the small and modéwaiechavior. the cylinder axisz. Also, ¢ represents the adjoint field, i.e.,
the solution of the reciprocal problem in which the source
and observer are interchanggd, p. 1131. It should be
the free-space velocity, it traverses an additidnelative to  noted that the variational solution will satisfy reciprocity
the specularly reflected rapath length equal to the cylinder [11] if the adjoint trial field is chosen via the substitution
diameter plus half the circumference, or a total additionalg— 4. — ¢— ¢~ 7, i.e.,
path of (2+)a. The interference pattern, therefore, should
have peak-to-peak spacingska that occur when the path gtriale oy o trial o
length difference is a wavelength, or farka=27/(2+ ) L ©
~1.22, Wh'ch is In close agreement with the aciual AVErag9G hare the incident angle is eliminatéd =0) by measuring
spacing in Fig. 3. Furthermore, because the creeping wavg, angles relative to itsee Fig. 1 This choice for the ad-
loses energy in proportion to the distance traveled along thfbint trial field is used througﬁout this paper. The Hankel
cylinder, it becomes weakédamped as the cylinder radius y

. function of the first kind and zeroth ordet,i?, in Eq. (5d)
becomes larger. Consequently, the interference pattern b?épresent$up to a constant factpa 2D free-space Green'’s
comes weakefdamped as the electrical size of the cylinder

i.e., its size parametdaa, increases. Therefore, the creepin function appropriate for this problefi3, Sec. 1.2.J. The

tributi b icallv_insianificant fg'variational cross section” is found from Eq.(3) with TV
wave contribution becomes numerically insignificant for o iod forT.

ka=20. AISO.’ Fhe h|gher—0rder_creep|ng waves that made ON€ it the correct fieldy (and, hence';/-/) on the scatterer sur-
or more additional complete circumnavigations in CIOCkWISeEN N

q terclockwise directi d th lind ace is used in Eq5), each of the integralll, N, andD, as
and counterclockwise directions aroun € Cylinder are Ofyq| as their ratio Eq(5a), will yield the correct scattering

._amplitude. However, in general, such correct surface fields
re not known, which necessitates the use of approximations
for ¢ (and its adjoint on the scatterer surface to obtain an
approximate variational scattering amplitu@é.

for creeping waves with TM polarizatiofl3, Sec. 2.2.1.3,
14, Sec. 4.1.2.4]2the numerical coefficient—2.20 in the
exponent of the dominant damping factor in E4c) would
be replaced by(~—5.05, and the overall constant factor

(=1.53 by (=~0.91), among other minor changes. Conse- IV. VARIATIONAL SOLUTION
quently, the creeping-wave contribution is numerically insig- WITH THE SHADOWED-BOUNDARY-
nificant for TM polarization, and produces only a slight, BORN TRIAL FUNCTION

barely perceptible wavering in the backscatter as a function ¢ approach we used to develop the boundary-Born trial

of ka. functions with shadowing has been described in detail in
[19], so here we just recapitulate its salient features. Briefly,
Il SCHWINGER VARIATIONAL PRINCIPLE :t is bgsed ?.n gljamfmgl.ph%(smal insight |rr1]to scattering IFI)rObé

FOR SCATTERING AMPLITUDE ems, in particular for limiting cases such as very small an

very large size parameteksa, and then to incorporate the
The Schwinger variational principle for wave scatteringessential physics into the trial function. In this approach,
from a cylinder with Neumann’s boundary conditigfE  starting with the classic Born approximatidne., just the
polarization can be readily derived following the standard incident-wave fieldd as a “seed,” a single universal trial
procedurg2-6, 7, pp. 1135 and 1545The resulting varia- function capable of correctly reproducing both the small and
tional expression for thécomplex scattering amplitude large ka limits, as well as ta(crudely imitate the essential
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physical requirements of the problem, is designed for the
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entire frequency range.
In this section we only state the results for TE scatteringwheren, andd, are the overalfangular-independentactors
with the main focus being on the backscatter, which is ofin Egs.(9a) and(9b), with explicit expressions for the other
prime interest in monostatic radar measureméhbss p. 9.
The following shadowed-boundary-Born trial function

#(p,d)=[1— B(ka)cosp][e? % — f(kp)cospek? o]

@)

6841

D=d,[d;+2d,f(ka)+dsf2(ka)], (10b)

symbolic quantities being obvious from the termwise corre-
spondence between Eq40g and(10b and (9@ and(9b).

The as-yet arbitrary functiofi(ka) is treated as a varia-
tional parameter being determined through the stationary
condition

is used only in the immediate neighborhood of the cylinder
and is capable of satisfying Neumann'’s boundary condition,
ie.,

dTVI9f(ka)=0. (11)

Then it follows from Eq.(10) that the stationanf(ka) can

' (ka)=dy(kp)/dp|,-2=0, (8)  be expressed as

provided f’(ka)=ik. Thus, augmenting the incident plane

wave (i.e., the classic Born approximatipmwith the f(kp) f(ka)=— M (12)
term enables the trial function to satisfy the correct boundary n1d3—nzd;
condition that is known to play a key role at low and mod- and the stationary scattering amolitude is
erate frequencief27]. The quantity that actually enters the y g amp
invariant expressiofb) for the scattering amplitude i{ka). ) )
The factor[1—pB(ka) cosp] is a (crude approximation to v N?  nidz—2nin,d;+n3d;
: Sl 7 . . TV=—=_ - , (13
geometric shadowing in that, for positiy@near unity, this D d,d;—d?

factor is small for¢ near zero and i1+ ) for ¢ near.
The _adjoint trial field follows from Eq(6), which implies
that 8= andf(ka)=f(ka).

Inserting the trial functior{7) and its adjoint into Eq(5),
and using Graf's addition theoref21, p. 363 at the cylin-
der surface in order to reduce the double integral in(&d)
to a sum of products of two single integrals, we obtain

N

and

where

and the arguments of Bessel and Hankel functions in Eq®
(9b) are understood to b&a, with the primes indicating
derivatives with respect to the argument. We also note th
due to the choice Eq6), N=N. It is convenient to write

—ka(i 77/2)[ sin %S Jy(a)—i g [cospdo( @)

+a@)]- 5 f(ka)(cos deJol @)+ (a0

where the symbol$(ka) andT" are now used to denote the
stationary value$28]. All of the quantities in Eqs(12) and
(13) are known, and reduce to simpler expressions for back-
scattering,gs=.

The first (shadowing factor in Eq.(7), with B(ka) as-
sumed independent af, was introduced in order to imitate
the shadowing effects that become important at high fre-
qguencieg7, pp. 1381 and 15910n the other hand, accord-
ing to the physics of wave scattering, shadowing is not
present for small size parameters because diffraction causes
the entire scatterer to be illuminated. Therefore, we specify
B(ka) by introducing a simple ramp function as follows:

1 3
+iB sin%s—isin%SS Ji(a) 0, ka<0.4
B(ka)=1 (ka—0.4)/(1.0-0.4), 0.4<ka<1.0 (14
1, ka=1.0.

1 ¢
—ES|n7SJ3(a)

)]

D=k2aX(7%4) >, &ncodmape)dHL’
m=0

X[Im+ipdl +if(ka) (I +iBIN)1? (9b)

a=2ka sin( ¢4/2), (90

Egs.(9a) and(9b) as

and

N=ng[n;+n,f(ka)] (109

Hence, forka=1, =1 and the shadowing factor in E7)
equals two at the central point on the illuminated Sidie- )
of the cylinder, then gradually diminishes to zero at the op-
posite point(¢=0) on the shadowed side, thus imitating cor-
rectly the expected shadowing effects at these pofis
For ka<0.4, 8=0 and the trial functior(7) goes over to
the boundary-Born function without shadowing, which pro-
vides[by virtue of the stationary(ka) employed in Eq(9)]
variational results that are very accurate. In fact, the non-
shadowed trial field3=0, yields very accurate results for
ka=<0.7. For moderate and large size parameters the non-
hadowed trial function yields a backscatter that reasonably
approximates the first few oscillations, but is heavily con-
minated by spurious wiggles and/or narrow-band spikes
eginning withka somewhat larger than one, as illustrated in
Fig. 4(c). Even so, this result is a marked improvement on
the corresponding Borfwhose scattering amplitude is rep-
resented byN with 8=0 andf(ka)=0] and Born-variational
[with B=0 andf(ka)=0 in Eq. (9)] approximations shown
in Figs. 4a) and 4b), respectively.
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FIG. 4. The Born and Born-variational approximatiof@otted curves are compared with the exact backscatfsolid curve in,
respectively,(a) and (b). The variational result$dotted curves calculated by using the boundary-Born trial function without and with
shadowing are shown against the exact solutmslid curve in, respectively,(c) and (d). Note that the variational result ifd) is very
accurate folka<0.6 andka=20, but lacks the interference pattern of the exact solution in the resonance region.

Furthermore, when the simple shadowing wiitka) de-  that the optics-plus-creeping-wave approximatibig. 3J) is
fined in Eq.(14) is incorporated into the boundary-Born trial reasonably accurate flta=2, suggests that augmenting the
function [with the stationaryf(ka) determined by Eq(11)]  variational backscatter with the creeping-wave contribution
as in Eq.(7), the spurious features are effectively eliminatedEq. (4c), might lead to better accuracy.
and the resulting backscatter is quite accurate for both small It is gratifying to see this expectation amply fulfilled, as
(ka=<0.6) and large(ka=20) size parameters, see Figdi Fig. 6 attests, where the hybrid solution obtained by substi-
However, in between, i.e., in the resonance regiortuting[cf. Eq. (4a)]

(0.4ska=20) [14, p. 147, where the exact solution attains a

peak nearka=0.8 and then oscillates about the geometric TWo=TV4 T (15

optics value ofo=1 [see Eqs(4b) and(3b)] with damped, . )

regularly spaced excursions, the shadowed-boundary-Borfto Eq. (3b) is compared with the exact backscatter cross

trial field yields an approximate backscatter cross sectio§ection and phase. Not only a remarkable improvement is

that resembles an overall average of the exact result. achieved forkka=2, i.e., for the domain where the represen-
tation (4) holds true, but also the agreement is quite good for
0.6<ka=<2.0, where the creeping-wave theory is not sup-

V. HYBRID (VARIATIOSNStU};II'gs CREEPING WAVES ) posed to be efficienisee Fig. 3. This somewhat unexpected

improvement is, in part, a result of our use of the same ramp

In order to gain further insight into the behavior of the function as in Eq.(14) to premultiply T (which is quite
shadowed-boundary-Born backscatter, we compare both threasonable but is mostly due to the fact that the shadowed-
cross sections and thscattering amplitudephases of the boundary-Born backscatt@" is more accurate than the op-
variational and optics approximations in Fig. 5. The varia-tics contributionT° for 0.7<kas2 [cf. Figs. 3 and &)].
tional result is very accurate fdra<0.6 [Fig. 4(d)], but the  And sinceT" itself is very accurate foka<0.6 andka=20,
optics approximation fails in this regioffFig. 3). However, good all-frequency accuracy is achieved with this hybrid so-
an inspection of Fig. 5 reveals that the two approximationgution for TE backscattering.
are in general agreement fea=2, and they practically co- On the other hand, for TM backscattering, we have found
incide for ka=10, both approaching the geometric opticsthat the hybrid solution does not lead to further improve-
limit for large ka. Coupling these observations with the fact ments of the already very accurate variational resules.
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FIG. 5. Comparison of théshadowed-boundary-Borrmariational solution(dotted curvg¢and the optics approximatidsolid curve. The
cross sections are plotted (@) and the(scattering amplitudephases in(b). Note that while the variational and optics approximations are in
general agreement with each other ka=2, the variational result is also very accurateKka=0.6 where the optics approximation fails, cf.
Figs. 3 and 4).

This is because the nominal changes effected by the corrdimited to those few scattering problems for which accurate
sponding creeping-wave contributipb4, Sec. 4.1.2.4]2are  and numerically efficient expressions for creeping-wave con-
comparable to the existing small inaccuracies in the variatributions are available, the present result nevertheless dem-
tional results. Therefore, unlike the TE case, for TM scatteronstrates that, for TE scattering, creeping waves constitute
ing further improvement in the shadowed-boundary-Bornan essential physical ingredient missing in the shadowed-
trial functions by (approximately including the creeping- poundary-Born trial fields. Therefore, fully variational solu-
wave effects is unwarranted from a practical computationaljons need to be developed, whose trial functions would be
standpoint. capable of directly accommodating the creeping-wave effects
through simple, approximate means similar to those used to
VI. SUMMARY AND CONCLUSIONS imitate the correct boundary condition and the expected
In this paper, we have demonstrated for a simple tes§hadov.ving effects. It has also been obse_rved thgt for T™M
problem of plane-wave scattering from an infinite cylinderScattering the shadowed-boundary-Born trial functions lead
with Neumann’s boundary condition that incorporating, via af0 Very accurate variational results because creeping-wave
hybrid solution, the creeping-wave contributigavailable —effects are numerically insignificant in this case and need not
from the exact solutioninto the variationally derived back- be included into the trial functions.
scattering amplitude yields good accuracy for all size param- It is our opinion that the shadowed-boundary-Born trial
eters. Intuitively appealing explanations have also been prdunctions, with the creeping-wave effects propeftywen if
vided concerning the effectiveness of this hylidriational ~ crudely incorporated, should be sufficient to yield good
plus creeping wavessolution in the entire resonance region broad-band accuracy for simple smooth scatterers with Neu-
and beyond. mann’s boundary condition. However, additional work is
Although practical applicability of the hybrid approach is needed in order to develop simple and efficient trial func-
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g g
3 (@ g (b)
- g
= 2]
g 11 5
E E
2 &
% E oL |
Bosl 2
g & -
- &
< 7
2 s
S 2
“ 0 2 -200° A . : -
0.01 0.1 1 10 100 & 0 2 4 6 8 10
ka ka

FIG. 6. Comparison of the hybriHotted curvg¢ and the exactsolid curve solutions. The cross sections are plottedanand the
(scattering amplitudephases inb). Note that, when the creeping-wave contributi@om the exact solutionis added to the scattering
amplitude obtained from theshadowed-boundary-Borwariational solution, the resulting hybrid solution yields good backscattering accu-
racy for all size parameters.
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